1902 - 1970. SPRINGS.

The following diagrams and dimensions are based on measurements taken from actual hubs.

In virtually all cases, variations have been noted amongst batches of the same springs. I have therefore used the dimensions which appear most typical.

The formula is the standard - Deflection = $\frac{8 \times P \times D^3 \times N}{3 \times P^3}$

P = Load in 1b. Where

D = Mean diameter of coil in inches.

d = Diameter of wire in inches. $(d^4 = times 10^{-6})$ The powers $G = Modulus of Rigidity in <math>lb/in^2$. (Use 12 x $10^6 lb/in^2$.)

N = Effective turns. (Open ends, same; closed ends, less 1.1/2 turns.)

For 1" deflection we transpose the above formula.

$$P.(1b) = \frac{G \times d^4}{8 \times D^3 \times N}$$

For example, taking the 1902 Compensating Spring below.

Load for 1 inch deflection = $\frac{(12 \times 10^6) \times (26.87 \times 10^{-6})}{8 \times 0.768^3 \times (5 - 1.5)} = 25.4 \text{ lb/in.}$

Hub of 1902. Taken from Hub No. 652.

Compensating Spring.

d = 0.072" $\frac{12 \times 26.87}{8 \times 0.768^{3} \times 3.5} = \frac{25.4 \text{ lb/in.}}{}$ 0/D = 0.840"D = 0.768"

I/D = 0.696"

In position spring has 5/16" compression. = 7.9 lb.

In Low " 1.5/16"

" = 16.4 lb.

Axle Spring.

Many variations occurred with this spring. Up to 4" long with 68 open coils. Some were 0.162" O/D and 0.028" wire diameter.

30 Open Coils.

$$d = 0.032"$$

$$0/D = 0.164"$$

$$D = 0.132"$$

$$1/D = 0.100"$$

$$= 22.8 \text{ lb/in.}$$

 $\frac{12 \times 1.05}{8 \times 0.132^{3} \times 63} = \frac{10.9 \text{ lb/in.}}{}$

(Later used as the Axle Spring in the following range of Hubs. See N.8.)

Models C, V, A, N, FN, K range, T, TF, TC.

N.8. Axle Spring.

N. 126. Indicator Spring.

d = 0.032"

$$O/D = 0.148$$
"

 $D = 0.116$ "

 $O/D = 0.116$ "

 $O/D = 0.116$ "

 $O/D = 0.116$ "

 $O/D = 0.016$ "

 $O/D = 0.016$ "

 $O/D = 0.016$ "

 $O/D = 0.004$ "

TF.113. Indicator Spring.

d = 0.032"

$$O/D = 0.148$$
" $\frac{12 \times 1.05}{8 \times 0.116^3 \times 28} = \frac{36 \text{ lb/in.}}{25 \times 1000}$ T,TF.

K.46. Cage Spring.

$$d = 0.036"$$

$$O/D = 0.550"$$

$$D = 0.514"$$

$$I/D = 0.478"$$

$$\frac{12 \times 1.68}{8 \times 0.514^{3} \times 5} = \frac{3.7 \text{ lb/in.}}{8 \times 0.514^{3} \times 5}$$
K range, except KB.

K.125. Cage Spring.

On the above two springs the O/D varied from 0.535" to 0.558".

Clutch Springs 1937 - 1970.

K.514.

d = 0.048" = 15.5 lb/in. 12 x 5.3 AR 1937 - 39. 0/D = 0.516" AW 1937 - 39. AM 1937 - 39. $8 \times 0.468^3 \times 5$ D = 0.468

 $I/D = 0.420^{\circ}$ I/D to suit small diam. axles, 0.406". (13/32")

K.814.

d = 0.040"

4 speed. AF 1938 - 39. FM 1939 only. 12 x 2.56 = 7.56 lb/in.0/D = 0.492" $8 \times 0.452^{3} \times 5.5$ D = 0.452"

I/D = 0.412" I/D to suit small diam. axles, 0.406".(13/32")

K.530.

d = 0.040" 12 x 2.56 = 7.1 lb/in. All hubs 0/D = 0.534" 1940 - 1948. $8 \times 0.494^{5} \times 4.5$ D = 0.494"

I/D = 0.454" I/D to suit larger diam.axles, 0.4375".(7/16") From 1940.

K.530A.

HSA.128.

d = 0.036"

12 x 1.68 = 4.0 lb/in. 3 sp. 1948 on. 0/D = 0.520" 4 sp. 1948 - 1950 8 x 0.484³ x 5.5 D = 0.484" 5 sp. 1966 on.

I/D = 0.448"

K.530B.

HSA. 148.

d = 0.030"

I/D = 0.452"

12 x 0.81 = 2.0 lb/in. 0/D = 0.512" $8 \times 0.482^3 \times 5.5$ D = 0.482"

4 sp. from 1950.

Springs for the SW Range.

L.15. Thrust Spring.

d = 0.056"

0/D = 1.200" $8 \times 1.144^{3} \times 2.5 = \frac{3.9 \text{ lb/in.}}{}$ SB, SG, SW. D = 1.144"

I/D = 1.088"

L.17. Clutch Spring.

d = 0.040"

12 x 2.56 0/D = 0.540" = 3.2 lb/in. $8 \times 0.500^3 \times 9.5$ D = 0.500"

I/D = 0.460"

J.G. 1994.

SB,SG,SW.

4 - Speed Inner Compensating Springs.

9000 1.9/16" Free.

d = 0.032" 0/D = 0.164" D = 0.132"

 $\frac{12 \times 1.05}{8 \times 0.132^{3} \times 25} = \frac{27.4 \text{ lb/in}}{27.4 \text{ lb/in}}$

Hubs to '50. ASC to '50.

25 Open Coils.

d = 0.028"

0/D = 0.156"

I/D = 0.100"

12 x 0.615 = 15.2 lb/in. 8 x o.128³ x 29

Hubs from '50. ASC from '50.

10000 1.9/16" Free. 29 Open Coils.

D = 0.128"I/D = 0.100"

Low Gear Springs. FW,FG,S5.

K.410.

K.813B. HSA.147.

Free. 3.1/2 Closed Coils. d = 0.048"

0/D = 0.596" D = 0.548"

I/D = 0.500"

12 x 5.3 $8 \times 0.548^3 \times 2$

12 x 1.33

 $8 \times 0.534^{3} \times 3$

8 x 0.538³ x 3

 $8 \times 1.014^3 \times 2$

12 x 9.8

 $8 \times 1.0^{3} \times 2$

= 24.1 lb/in. FW,FG. 1945 - 1950

K.410B. HSA.143.

11/16" Free. 4.1/2 Closed Coils.

d = 0.034"

0/D = 0.568" D = 0.534"

I/D = 0.500"

= 4.4 lb/in.

FW,FG. 1950 - on.

HSA.273.

716" Free.
Closed Coils.

d = 0.038"

0/D = 0.576"

D = 0.538"

I/D = 0.500"

 $\frac{12 \times 2.09}{2} = \frac{6.7 \text{ lb/in.}}{2}$ S5.1966 - on.

Low Gear Springs. AF, FC, FM & ASC.

K.810.

3.1/2 Closed Coils.

d = 0.066"

0/D = 1.080"

D = 1.014"

I/D = 0.948"

12 x 18.9 = 13.6 lb/in. AF.FM. 1938-1939.

K.810A.

Free. Closed Coils. d = 0.056"

0/D = 1.056"

D = 1.000"

I/D = 0.944"

 $= 7.35 \, lb/in.$ ASC.

FM,FC. 1940 - 1950

K.810B.

Closed Coils.

d = 0.052"

0/D = 1.050"

D = 0.998" I/D = 0.946"

12 x 7.3 $= 5.5 \, 1b/in$. $8 \times 0.998^3 \times 2$

FM,FC 1950 on. ASC

J.G. 1994.

SPRINGS FOR THE S5 RANGE OF HUBS.

E:\Hubs\Springs.Sam

d = diameter of wire; O/D = Outs		side diam. of spring; I/D = Inside diam		liam.of spring;	D = Mean diam. of spring.	
					(Calculated Load.
S5.	1966 - 1974. Clutch Spring.	HSA.128.	7 Closed coils. O/D = 0.520"	1.700" free. I/D = 0.448"	d = 0.036" D = 0.484"	4 lb/in.
	Low Gear Spring.	HSA.273.	$4\frac{1}{2}$ Closed coils. O/D = 0.576"	11/16" free. I/D = 0.500"	d = 0.038" D = 0.538"	6.7 lb/in.
S5/1	1974 - 1981. Clutch Spring.	HSA.128.	7 Closed coils.		d = 0.036"	
	Low Gear Spring.	HSA.273.	O/D = 0.520" 4½ Closed coils. O/D = 0.576"	I/D = 0.448" 11/16" free. I/D = 0.500"	D = 0.484" d = 0.038" D = 0.538"	4 lb/in. 6.7 lb/in.
	Pinion Return Spring.	HSA.319.	3 Open coils. O/D = 0.565"	0.870" free. I/D = 0.477"	d = 0.044" D = 0.521"	13.25 lb/in.
S5/2	1981 - 8-1988. Clutch Spring.	HSA.128.	7 Closed coils.	1.700" free.	d = 0.036"	
	Ciuca Spring.	1154.126.	O/D = 0.520"	I/D = 0.448"	D = 0.484"	4 lb/in.
	Low Gear Spring.	HSA.347.	$4\frac{1}{2}$ Closed coils. O/D = 0.568"	0.660" free. I/D = 0.488	d = 0.040" D = 0.528"	9 lb.in.
	Pinion Return Spring.	HSA.346.	4½ Closed coils. O/D = 0.576"	0.850" free. I/D = 0.480	d = 0.048" D = 0.528"	18 lb/in.
S5/2	After 1988-8.					
	Clutch Spring.	HSA.128.	7 Closed coils. O/D = 0.520"	1.700" free. I/D = 0.448"	d = 0.036" D = 0.484"	4 lb/in.
	Pinion Return Spring.	HSA.422.	7 Closed coils. O/D = 0.559"	1.200" free. I/D = 0.481"	d = 0.039" D = 0.520"	4.5 lb/in.

Note: Many variations have been noted with the Clutch springs. 1.7" is a typical free length but I have found springs as low as 1.47" in some hubs. A few springs have been seen with only $6\frac{1}{2}$ closed coils. Also some with an O/D of 0.540".